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Critical slowing down of the kinetic Gaussian model on hierarchical lattices
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The critical slowing down of the kinetic Gaussian model on hierarchical lattices is studied by means of a
real-space time-dependent renormalization-group transformation. The dynamic critical exparahtthe
exponentA are calculated. For hierarchical lattices with reducible generators, both the dynamic critical expo-
nentz and the exponem are independent of the fractal dimensibp of the lattice, the number of branches
m, and the number of bonds per brartlof the generator—i.ez=2 andA=1. For hierarchical lattices with
irreducible generators, the exponentis the same—i.e.A=1; however, the dynamic critical exponenis
dependent on the concrete geometrical structure of these lattices. In addition, it was found that the lattice
dependence of the correlation-length critical exponeistthe same as that of the dynamic critical exporent
Finally we give a brief discussion about universality for critical dynamics.
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I. INTRODUCTION less attention has been paid to the study of the critical dy-
N . ) namics on these lattices.

_Indynamic critical phenomena, the critical slowing down  yierarchical lattices can be constructed through an itera-
is characterized by a divergent relaxation timef systems  4ie decoration of a two-point bond by a generator, which has
near the critical point. This divergence can be described by, yertices—i.e., the nodes. Figure 1 shows the construc-
the dynamic critical exponemtwhich is given by tions of a few members of hierarchical lattices. First, one
replaces a single bond by a basic cell, which is called a
generatofsee Figs. (b), 1(e), and Xh)], and gets a lattice of
. . . order 1. At the next stage, each bond of the lattice of order 1
where the exponent=2zv, v is the correlation-length critical g qecorated with the generator in the same manner, then the
exponentT, is the critical temperature, ardis the correla- | iice of order 2[see Figs. (), 1(f), and 1i)] is formed.

tion length which also diverges at the critical point. ~ panatition of this procedurl times produces the lattice of
_ As we know, Glaubefl] introduced the single-spin flip- oqer N, Finally, an infinite lattice—i.e., a hierarchical
ping mechanism and exactly solved the one-dimensional ki-

netic Ising model. Also, Zhu and Yarig] exactly solved the o >
kinetic Gaussian model on translation-invariant lattices by
presenting a single-spin transition mechanism, which is a b=2
generalization of Glauber’s single-spin flipping mechanism m=2
and is suitable to describe both discrete and continuous spin
systems. In addition, other efforts to obtain the dynamic criti- o v

cal exponentz have been made by means of a variety of @ (b) (c)
approaches, including expansiori3,4], the real-space time- o
dependent renormalization-groupTDRG) transformation

[5-8], high-temperature series expansi¢f,10, Monte b=2
Carlo simulations[11-14, damage spreadinfl5,14, and m=3| — -
Monte Carlo renormalization-group calculatiofis,18. As

far as the TDRG transformation is concerned, it is a very

T~ &~ |T-TJ?, (1)

effective method to study the critical slowing down of spin (d () 0
systems on fractal latticeld 9—29 due to their self-similar
geometrical features. Among these fractals, hierarchical lat- {

tices[26—29 are highly inhomogeneous, and they may pro-
vide insights into other low-symmetry problems such as ran-
dom magnets, surfaces, etc. Therefore, a lot of work on
hierarchical lattices has been done recef89—34. How-

ever, in comparison with the static critical behavior, much (°) " S
g U

b=2 | — —

FIG. 1. First two stages of the constructions of a few members
*Electronic address: jianxinle@yahoo.com of hierarchical lattices.
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lattice—can be formed. According to graph the¢8p,3q,  with irreducible generators, the exponanis the same—i.e.,
one can distinguish between a reducible generator and akh=1; however, the dynamic critical exponenis dependent
irreducible one. A generator is reducible if it can be con-on the concrete geometrical structure of these lattices and
structed from its constituent generators; otherwise, it is irrecan be different even if the fractal dimensi@} and the
ducible. Usually, a reducible generator is made up of someonnectivity Q are the same. In the following section, we
identical one-dimensional generators, and its two nodes angresent descriptions of the kinetic Gaussian model with the
joined bym branches ob bonds. For example, the two gen- single-spin transition mechanism and the method of the
erators shown in Figs.(th) and Xe) are reducible because TDRG transformation. The critical slowing down of the ki-
they can be constructed from two and three identical onenetic Gaussian model on hierarchical lattices with reducible
dimensional generators, respectively. In contrast with theenerators is studied in Sec. Ill. Section IV is devoted to
above two reducible generators, the generator shown in Fidnierarchical lattices with irreducible generators. Finally, we
1(h) is irreducible because its two internal sites 3 and 4 arayive a brief discussion and conclusion in Sec. V.

joined by a bond. In terms of recursion relations of the

renormahzgﬂon-group transformation, the recursion relation Il. KINETIC GAUSSIAN MODEL AND TDRG

for a reducible generator can always be written as a product TRANSEFORMATION

of the recursion relations for its one-dimensional generators.

For example, consider the Ising model on a hierarchical lat- Berlin and Kac[38] introduced the spherical and Gauss-
tice with the reducible generator shown in Figbjl One can ian models to illuminate some of the complexities of the
write the recursion relation of the renormalization-groupcritical phenomena, and they also pointed out the connection

transformation as between the above two models by means of a calculation of
) the average of the fourth power of spin—i.e., (af. In the
Al o102 = <E eK"3("l+"2))<2 eK"4(”1+"2)), spherical model, the spherical conditidfCyo?=N must be
o3 Ty

satisfied for every configuration of spins. Above the critical
where K denotes the interaction between the nearestt€mperature, the distribution of a finite number of spins—

neighbor spinsK’ represents the renormalized interaction, -6 @ number independent o for large N—is Gaussian.
and A is an additive constant produced after the Below the critical temperature, however, deviations from a

renormalization-group transformation. To describe the geoSa@ussian distribution are obtained because of the coopera-
metrical features of the generator of a hierarchical latticelon @mong the spins, which is forced by the spherical con-
one can employ some parameters such as the aggregatiqjﬁ'on and does not exist in the Gaussian model. In addition,
numberA, the minimum cuC, and the distance between the th€ Spherical model is a valid model for all temperatures,
nodes b, the definitions of which are as follows: the aggre- Whereas the Gaussian model becomes invalid for tempera-
gation numbe is the total number of bonds, the minimum tures below a certain critical temperature. Herein we shall
cut C is the minimum number of bonds which need be cut to'€Stict ourselves to the Gaussian model.
separate the nodes, and the distance between the hpdes The reduced Hamiltonian of the Gaussian model can be
defined as the number of bonds on the shortest path joiningXPressed as
them. Based on the above three parameters, the fractal di- B _
mensionD; and the connectivity) are defined, respectively, H=-pH= KZ 0i0j, 3)
as (ij)
In A Inc where B=1/kgT, K is the reduced interaction between the
= n_, - n_. 2) nearest-neighbor spins, the continuous spin variablakes

Inb Inb any real value in the intervatoo, +o0), and the sunk, is

Kong and his collaboratof87] investigated phase transi- Over all nearest-neighbor pairs of spins. The probability of
tions of the Gaussian model on a family of hierarchical lat-finding a given spirv; betweeno; and gj+do; is given by

D¢

tices with reducible generators and calculated six static criti- b
cal exponents, the results of which are as follows: (4 f(o)do exp(— ﬁo?)da- 4)
-Dy)/2, B=(Ds=2)/4, y=1, 6=(Ds+2)/(Ds-2), =0, and v 2 ')

v=1/2. It can befound that the critical exponentg », and | ] ] o ] .

v are independent of the fractal dimensibp of the lattice, 1N Whichg; is the coordination number of lattice sitandby,

while the others—i.e.q, 8, and 5—are dependent on it. is a constant only dependent on the coordination numgper
In this paper, we study the critical S|0wing down of the Thus, the.equilibrium probability distribution of the spins

kinetic Gaussian model on hierarchical lattices by means of §an be written as

real-space time-dependent renormalization-group transfor-

mation. The dynamic .critical _exponeptand t.he exponem Pe({U})H do, = 1 exp{H({a})]H do, (5)

are calculated. For hierarchical lattices with reducible gen- i Z i

erators, both the dynamic critical exponenand the expo-

nentA are independent of the fractal dimensp the num- where {o} denotes a configuration of spins

ber of branches, and the number of bonds per branbhof (o1, ...,0,...,0n), and Z is the partition function of

the generator—i.ez=2 andA=1. For hierarchical lattices system—i.e.,
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* d
z= f [ doif(oi)]eXdH({o})]- ) 752 hyoPel{a)
—0 i i
Suppose that the system, under a constraint, is first :—EEhq_(t)(o'i—a'i)V\/i(O'i—>a'i)Pe({0'}). (13
brought into an equilibrium state. Then at tine0 the con- i 6

straint is removed, and the system relaxes towards equilib-
rium via an interaction with a heat bath. In this process, onl))3
one spin is allowed to change itself each time according to +o0
the single-spin transition mechanig@l. P,({c}) can be re- > (o; - 07)Wi(o; — &) :f (07— o) Wi(a7 — 07)f(07)do;
garded as the infinite-time limit of the spin time-dependent ai -

probability distributionP({c},t), the time evolution of which

y calculating that

I : K
is given by the master equation =0i- b—E Ti) (14)
q; i)
d R i - :
Toap({ff}yt) = E > [~ Wi(o; — 67)P{aht) master equationl3) can be reduced to the following form:
i

d
FW(G - )Pohind], () g Ma®aPdo)

wherer, is a bare time scale characterizing the couplingtoa  _ S het B
heat bath andV(o;— 0;) is the single-spin transition prob- B : qi( )| o
ability rate and satisfies the detailed balance condition

b£2 Uj(i)>Pe({U})- (15
g; (i)

The TDRG transformation is composed of two stages.

Wi — ) Pooq, ..., -.. .00 One is the rescaling of the space—i.e.,
- = : (8
Vvi(a'i—>0'i) Pe(O'l, o0y ...,O'N) X~>X'=bX, (16)
as well as the normalization condition whereb is the length-rescaling factor. The other is the res-
caling of the time scale—i.e.,
2 W(o; — 07) = 1. 9 76 = brg. (17)

1
Owing to the geometrical features of hierarchical lattices, the
Usually, the spin transition probability rate takes the follow-first stage of the TDRG transformation is carried out by
ing form: means of the decimation renormalization-group transforma-
tion R, which takes the fornR ==, T(u,0) =241y,
Wi(o, — &) = 1 exp[ KffiE ‘Ti(i>]- (10) -0j), whereg; der_10te_s those spins retained in t_he process of
- i the renormalization-group transformation. The
renormalization-group transformation of master equation
wherej(i) represents the set of all nearest neighbors toi site (15) gives
and the normalization factdp; can be expressed as

+coo K2 9
Qi:f EXP[KAiE 'i}f(Ai)dAi:ex{_ 2 oy }
e Rt et qui(m) 0'“)

(11

To study the critical slowing down of the kinetic Gaussian  In the invariant subspace of the parameter sp#cé),
model on hierarchical lattices, we shall use the real-spacghe left-hand side of Eq(18) gives rise to the following
time-dependent renormalization-group transformation, prorecursion relations:
posed by Achiam and Kosterli{s] and restrict ourselves to
the relaxation of an infinitely small perturbation from equi- K"=R(K), h'(t)=Ah(), (19
librium. If we adopt a magneticlike perturbation in the fol- . .
lowing form at any time in which

d
| S ha(tPllo) |

:—R[z hqi(t)<0'i_£2 O'j(i)>Pe({0'}):|- (18

T)

g, (1) (0

Ploht =(1+ S hyVaPulo, (12 no={ho |, vo=lno
i 2 ’ G2 '

where the perturbation fieltjqi(t) is dependent on the coor-
dination numbe; of lattice sitei, then master equatiofY)  andA is a transformation matrix. Also, the right-hand side of
becomes Eq. (18) results in the recursion relation
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sion D¢ is equal to 1+Imm/In 3. Using assumptior(23),
master equatiol5) becomes

a

d ol o5
7'Od_tg [ hmnl(t)n_l + hmnz('[)n_2

+hy() 2 (051 + 0§r+2)] Pe({o})

4 r=1

2m+2
o

2K o7 o5
== 1= hpn O= + N (D=2
E( bz)[ O+ P (0

@) (b)
m

FIG. 2. Two families of reducible generators of hierarchical lat- +hy(t) > (094t Ugr+2)] P.({a}), (24)
tices:(a) the number of bonds per branblx3 and(b) the number r=1

of bonds per branch=4.
where « denotes thexth generator, the su,, is over all

mie generators of the hierarchical lattice, the coefficier,1(br

h"(t) = Qh(), (20 1/n,) in the termo? (or o5) comes from the fact that; (or
where n,) neighboring generators share the same lattice siter 1

, 2), and the equilibrium probability distributioR.({o}) can

hql(t) be expressed as

h'(t) = by, () . b,

: P({o}) = Z ex K% o0~ 2 ?Iﬂ'iz

I 1
andQ is a transformation matrix. In the second stage of the J
TDRG transformation, representirtg(t) in terms of h'(t)

and performing the rescaling of the time scale will restore the
master equation to an invariant form. As far as the dynamic

m

1

- = a o a @ @ a

= ZH exp) K> (010541 % 05110515+ 051503)
a r=1

critical exponentz is concerned, it can be determined in the m(of)z m(ag)Z
following way [8]: if matricesA and Q commute, then 2 n, 2 n
)\max V4 b i
— = 2 a a
wmax b ! (21) - Ez [(02r+]_)2 + (0'2r+2)2] . (25)
where.x and o, are the largest eigenvalues AfandQ, . . . .
respectively; otherwise, Master equation24) can also be written in the following
form:
)\max_ 7
. =b? (22 d oK
m 0,2 g (DoiPelloh) == X (1 - b—) hy(®aiPe({a).
where o, is the smallest eigenvalue 61. In addition, be- i i 2
cause a hierarchical lattice is highly inhomogeneous and its (26)
maximum order of ramification is infinite, it is necessary to ) o o
present the following assumptidas,37: First, we perform the decimation renormalization-group
transformationR to the equilibrium probability distribution
hqi(t) ~ % G 23 P.({o})—i.e., expression25). Using assumptiorf23), one
“h A can get
hg () by g g
which makes the TDRG transformation tractable in this case. 1 Bran, (1) Bran, (u$)?
R e
@ 1 2
I1l. KINETIC GAUSSIAN MODEL ON HIERARCHICAL M e
LATTICES WITH REDUCIBLE GENERATORS XH do® . do®
2r+1¥Y 2r+2
r=1J -

As defined in Sec. I, a reducible generator consistsof
branches ob bonds, which meet at the two nodes. Figure 2
shows two families of reducible generators which correspond XeXP<K(M(fU§r+1 + 054105012 F OgrioM3)
to the cases di=3 andb=4. For the hierarchical lattice with
a reducible generator in the caselof3 as well as an arbi- Dy W Y
trary number of branches [see Fig. 23)], the fractal dimen- —E[(O‘zm) + (0942 ])
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— 1 ! ra ra
= 1T Acexp K/ i

br"l 1 Ia)Z_EE 701)2
2 n, 1 2 n, 12

1 by,
=, ex K’E ILL.'M.'—E —'#_’2>
Z p< w2

=Pe({u'}),

A0_< 2 )m
Vb3-K?/

the spins are rescaled as

, /m(b2 - 3K?)
p = EKu= W#

where

and the recursion relation of the renormalization-group trans-

formation is given by

PHYSICAL REVIEW E 71, 016105(2005

—E M(hnl(t)”—ia + hn2<t>“—éa) PL({u)
ny Ny

> E(K)(bp=K)
d b, +
=7 E% 0P’
d
= 7o, 2 g (O P}, (35)
(27) where
’ — _ m(b2+K)
28) B T I

In the same way, the renormalization-group transformation
of the right-hand side of master equati®@®6) gives

2K
P R{ 2 (1 - b—z) hg (Do Pe({cr})}

- _XK i %
i R{§<1 bz){hmr&(t)nlJrhmrb(t)nz

3 m
=RK)= 5, (30 +p(0 (05, + a§r+z>} Pe({a}>}
r=1
from which one can get the critical poil=b,/2. Second, m(b, - 2K) (b, + K) o
we perform the decimation renormalization-group transfor-  =— >, (K)bu(by— K) hg, (O Pee'})
mation R to o;P.({c}). Using assumptioii23), one can get i §(K)ba(b
2K, " ! !’ ’
R{o{Pe({o})} = g(K) “Py{ud), (31) =2 (1 - b—2> e (Om Pe(in'), 37
e where
RiosPel{oh} = g Pelli'D), (32 U (o SIS N
o % &(K)(by = K) (b, - 2K") s
R{0% 1 P{o})} = K(bz’u“l—zK’U;?) PL{u'}) Furthermore, if we represehgi(t) in terms théi(t) and per-
)bz - K9 form the rescaling of the time scale by
(r:112|---m)l (33) . _k _(b2+K)2
and =D TO_;TO_WTO, (39
R{a§,+2Pe({a})}:MPQ({M’}) then the invariant form of master equatig@6) can be
EK) (b3 - K?) restored—i.e.,
(r=1,2,...m). (34 oK'
Thus, using assumptior23) and Egs. (31)~(34), the Todt2 hg (O Pel{'h) = - §|: (1_b_2>hqi(t)'“i Pel{u')).

renormalization-group transformation of the left-hand side of

master equation26) gives

R{E o (007 Pe({on}

a

d oy o
= ToaR{E |:hmn1(t)n_i- + hmnz(t)n_j

a

+ h2(t)z (O'ng + O-ZHZ)] Pe({o})}
r=1

(40)

From the recursion relation of the renormalization-group

transformation—i.e., EQ. (30)—one can obtain the
correlation-length critical exponemt—i.e.,
11 (di) _In9_, m
v Inb dK /| In3 7

Also, from Eq.(39) the dynamic critical exponerst can be
calculated as
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1 b, + K)? In9
7= — (22—)2 =2 (42)
Inb  b5-3K K, In3
Thus, the above two equatio(4l) and(42) give
A=zv=1. (43

For the hierarchical lattice with a reducible generator in
the case ob=4 as well as an arbitrary number of branches
[see Fig. )], the fractal dimensiorD; is equal to 1
+Inm/In 4. By means of the TDRG transformation, one can
also obtain that

z=2, A=1. (44)

The above calculations, as well as the investigation on %

family of diamond-type hierarchical lattices with the number
of bonds per brancth=2 [24], reveal that for the kinetic
Gaussian model on hierarchical lattices with reducible gen
erators, both the dynamic critical exponenand the expo-
nentA are independent of the fractal dimensidp the num-
ber of branches, and the number of bonds per brarztlof
the generator—i.ez=2 andA=1. This result is very similar
to that in Ref.[2], where it has been found that for one-,
two-, and three-dimensional translation-invariant lattices
both the dynamic critical exponet=2 and the exponent
A=1 are independent of the spatial dimensionality.

IV. KINETIC GAUSSIAN MODEL ON HIERARCHICAL
LATTICES WITH IRREDUCIBLE GENERATORS

Figure 3 shows three irreducible generators of hierarchi

cal lattices. For the hierarchical lattice with a irreducible gen-

erator corresponding to Fig(&, the fractal dimensio;¢
=In6/In2 and the connectivityQ=1. Using assumption
(23), the right-hand side of master equatidrb) becomes

- hqi(t)<0i - b£2 Uj(i)) P({o})
i q; j(i)

o

op
+hgn, ()% + hy(t) 0§
2

3K &
-> (1 —b—s){hzngt)‘;—i

+hy(t)og + hg(t) o } Pe({o})

PHYSICAL REVIEW E71, 016105(2005

(@) (b) ()

FIG. 3. Three irreducible generators of hierarchical lattices with
ifferent sets of parametef#\,C,b} and{Ds,Q}: () A=6, C=2,
b=2 and D;=In6/In2, Q=1; (b) A=5, C=2, b=2 and Ds
=In5/In2,Q=1; (c) A=8,C=3,b=2 andD;=3, Q=In3/In 2.

3K
_ 2 (1 - b_3> hqi(t) oiP({a}). (45)

Thus, master equatiofl5) can be written in the following
form:

>

Tod%E hg(DiPe({or}) = - (1 ) ?TK) hy(DoiPe({o}).
i 3

(46)

In addition, the equilibrium probability distributioR.({c})
can be expressed as

Pellol) =3 exp(

- by,
ot

K> g0 ->

(i) i

1
= EH exp{ K(o§ + 05+ o§)(a5 + 02)
Doy (0 Doy (08 By s
2 n, 2 n 27
_E‘} a2 a\2
2[(03) + (21, (47)

the renormalization-group transformation of which gives

1 4o 5 b2 (Ma)Z b2 (Ma)Z b b
R{Pd({ohy =211 | Tldot exp{ K(u + g + 005 + o) = 10 1 = ZRE 2 = 2H(0)? = (09 + (09)°)
a J—x i=3 ng 2 m 2 2
1 bn, 1 bn, 1 } 1 by,
-= K; ra, ra_ il raN2 _ 2 — ran2 | — — K/ o i '12 :P/ ’ , 48
ZE[ AO eXp|: M1 Mo 2 nl(,u]_ ) 2 nz(Mz ) 7 ex <IE]> Mi /"LJ ; 2 Mi e({lu’ }) ( )
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where
A= 2T\ bbby - 2K7)”
the spins are rescaled as
[ 2b,b; - 8K?
"H K= T, 50
m'=EK)u by — 2K “ (50)

and the recursion relation of the renormalization-group trans-

formation is given by

boK2
K'=R(K) = ,
() b2 - 6K?

(51)

from which one can get the critical poitt.=bs/3. Using
assumption23), one can get

R{o7P{o})} = §(K) 1"Pe{u'}), (52
R{o5P( L ), (53
{o5P({oh)} = P “Pe{u'} )
“ op _ oK+ pp” ,
R{Uape({o})}_R{Uspe({a})}_—g(K)(bzbg K2 Pe({u'}),
(54)
and

. 2K (g + 115" )

R{osP{o})} = <) (byba = 27) Pe{u'}). (55

Thus, using assumptior(23) and Egs. (52—«(55), the

renormalization-group transformation of the left-hand side o

master equatio6) gives

R{Z o (007 Pe({a})}
d
= Tod_tR{E [thl( -+ Pan, (t) +hy(t)og + ()

X (o3 + 0'5)} Pe({ff})}

E 2(b,bs + 3b,K — 4K?)
&(K)(bobg — 2K?)

dt

(h (- +h (t)—) Pe({n'})

E 2(b2b3 + 3b,K — 4K?)

T0Gt2  £(K)(bpby— 23 4 A el

= ro—E g (0 Pau'D, (56)

where

PHYSICAL REVIEW E 71, 016105(2005

2(b2b3 + 3b2K - 4K2)
€(K) (bybs - 2K?)

In the same way, the renormalization-group transformation
of the right-hand side of master equati@®) gives

- R{z (1 - f)—K>hqi<t>oiPe<{o}>}
i 3

__R{E(l__)[th (t) +h2n (t)_g

hg (1) = \hg () = hg(t).  (57)

+hy(t)og + h(t) (o5 + 05)] Pe({tf})}

.y 2(bg = 3K)(b,bg + 3b,K — 4K?)
i &(K)by(bybs = 2K?)

Xhg () Per'})
=- E ( )h” (Ou Pe({u'}), (58)
where
o _ 2(b3 = 3K)(bybs + 3b,K - 4K?)
a0 = M= ooy - 2KP) by -3y Y
(59

Furthermore, if we represehgi(t) in terms ofhf’li(t) and per-
form the rescaling of the time scale by

A b;(b; + 3K)

T0=bfr=—7= b2 — 6K2 T0s (60)
3

then the invariant form of master equatigd6) can be
festored—i.e.,

B S rgomPit =- 3 (1-3 g ompuen.
i 3
(61

From the recursion relation of the renormalization-group

transformation—i.e., Eg. (51)—one can obtain the
correlation-length critical exponemt—i.e.,
1i_1 ,n(%) _In6 62)
v Inb " \dK /[ In2

Also, from Eq.(60) the dynamic critical exponerz can be
calculated as

1 b;(bs + 3K In6
=— In 3(23—2) -no (63)
Inb bs—6K* | In2
Thus, the above two equatio®2) and(63) give
A=zv=1. (64)

For hierarchical lattices with irreducible generators corre-
sponding to Figs. @) (Ds=In5/In2, Q=1) and 3c¢) (D
=3, Q=In3/In2), by means of the TDRG transformation,
one can also, respectively, obtain that
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A is the same—i.e A=1; however, the dynamic critical ex-
ponentz is dependent on the concrete geometrical structure
of these lattices and can be different even if the fractal di-
mensionD; and the connectivityQ are the same.

As mentioned in Sec. |, Zhu and Yaijg] exactly solved
the kinetic Gaussian model on one-, two-, and three-
dimensional translation-invariant lattices and found the ex-
ponentA independent of the spatial dimensionality—i.&.,
=1. By means of the TDRG transformation, Zhu and Yang
[23] also studied the critical slowing down of the kinetic
Gaussian model on the nonbranching, branching, and multi-
(@) (b) branching Koch curves and obtained that the exponeist
equal to 1 and is independent of the fractal dimension of the
Koch curve. In this work, we also obtained that the exponent
A is always 1 for the kinetic Gaussian model on hierarchical
lattices with reducible or irreducible generators. Based on the
above investigations, we may suppose that this result—i.e.,
A=1—is produced by the kinetic Gaussian model itself and

FIG. 4. Two irreducible generators of hierarchical lattices with
the same set of parametds, C,b} and{D;,Q}: A=8,C=2,b=3
andDs=In8/In3,Q=In2/In 3.

_In5

‘= In2’ A=1, (65) is irrelevant to the details of lattice structure. In other words,
the resultA=1 seems to imply that the effect of lattice de-
and pendence of the dynamic critical exponertounteracts that
In(16/3) In3 of the correlation-length critical exponentWe believe that
2= T 4 “ina2 A=1. (66)  there is some interesting physics behind it to be further ex-

posed.

From the above calculations, it can be found that for the In this paper, we also found that the lattice dependence of
kinetic Gaussian model on hierarchical lattices with irreducthe correlation-length critical exponentis the same as that
ible generators, which have different sets of parameteref the dynamic critical exponerz In the case of reducible
{A,C,b} and {D;,Q}, the dynamic critical exponert has  generators, the correlation-length critical exponeris al-
different values dependent on the concrete geometrical strugvays equal to 1/2, which is in good agreement with that in
ture of these lattices, whereas the exponkiig the same— Ref. [37]. In the case of irreducible generators, this exponent
i.e., A=1. In fact, this result is still correct even if hierarchi- is not equal to 1/2, but has much dependence on the concrete
cal lattices with irreducible generators have the same set dgfeometrical structure of hierarchical lattices. As mentioned
parameterdA,C,b} and {Ds,Q}. Figure 4 shows two irre- in Sec. |, for the Gaussian model on hierarchical lattices with
ducible generators of hierarchical lattices with the salne reducible generators, the critical exponeptand 7, like »,

C, b, andD;, Q—i.e., A=8, C=2, b=3 andD;=In8/In3, are also independent of the fractal dimensi@nof the lat-
Q=In2/In 3. For hierarchical lattices with irreducible gen- tice, while the others—i.eq, 8, and 5—are dependent on it
erators corresponding to FiggaBand 3b), the results of the [37]. Thus, it is obvious that the lattice dependence of the

TDRG transformation are, respectively, static critical exponents, B, and § is different from that of
the dynamic critical exponerzt In fact, the behavior of the
5= 1+In_4 A=1 67) dynamic critical exponent on hierarchical lattices reflects
In3’ ' one aspect of universality for critical dynamics. As far as

fractal lattices are concerned, universality is still an open

and problem even for static critical phenomef&s].
In 10 As we know, universality is one of the three pillars of
z=——, A=1. (68) modern critical phenomeri89], and it depends on a number
In3 P

of factors. The static critical phenomena depend on the spa-
tial dimensionality and the symmetry of the order parameter,
while the dynamic properties will depend on additional prop-
erties of the system which do not affect the statics. It is
In this paper, by means of a real-space time-dependemionjectured4] that the universality class for critical dynam-
renormalization-group transformation, we studied the criticalcs is sufficiently determined by the conservation laws,
slowing down of the kinetic Gaussian model on hierarchicalPoisson-bracket relations among the order parameter, and the
lattices. The dynamic critical exponentind the exponenk conserved densities, the spatial dimensionality, the symmetry
were calculated. For hierarchical lattices with reducible genof the order parameter, and any other properties that affect
erators, both the dynamic critical exponenand the expo- the static critical behavior. However, through the investiga-
nentA are independent of the fractal dimensibp of the  tions of the dynamic critical exponemtin this paper, we
lattice, the number of branchas, and the number of bonds have shown some unexpected difficulties in searching for the
per branchh, of the generator—i.ez=2 andA=1. For hi-  complete set of universality criteria for critical dynamics on
erarchical lattices with irreducible generators, the exponentierarchical lattices. We believe this is an interesting ques-

V. CONCLUSION AND DISCUSSION
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tion to be further studied. Also, the results of this paper sug- J.-X.L. would like to thank Dr. X.-M. Kong for the valu-
gest that as far as universality is concerned, one cannot leaable discussions. This work was supported by the National
much from hierarchical lattices to understand the behavior oNatural Science Foundation of China under Grant No.

critical dynamical exponents on regular lattices.
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