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The critical slowing down of the kinetic Gaussian model on hierarchical lattices is studied by means of a
real-space time-dependent renormalization-group transformation. The dynamic critical exponentz and the
exponentD are calculated. For hierarchical lattices with reducible generators, both the dynamic critical expo-
nentz and the exponentD are independent of the fractal dimensionDf of the lattice, the number of branches
m, and the number of bonds per branchb of the generator—i.e.,z=2 andD=1. For hierarchical lattices with
irreducible generators, the exponentD is the same—i.e.,D=1; however, the dynamic critical exponentz is
dependent on the concrete geometrical structure of these lattices. In addition, it was found that the lattice
dependence of the correlation-length critical exponentn is the same as that of the dynamic critical exponentz.
Finally we give a brief discussion about universality for critical dynamics.
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I. INTRODUCTION

In dynamic critical phenomena, the critical slowing down
is characterized by a divergent relaxation timet of systems
near the critical point. This divergence can be described by
the dynamic critical exponentz which is given by

t , jz , uT − Tcu−D, s1d

where the exponentD=zn, n is the correlation-length critical
exponent,Tc is the critical temperature, andj is the correla-
tion length which also diverges at the critical point.

As we know, Glauber[1] introduced the single-spin flip-
ping mechanism and exactly solved the one-dimensional ki-
netic Ising model. Also, Zhu and Yang[2] exactly solved the
kinetic Gaussian model on translation-invariant lattices by
presenting a single-spin transition mechanism, which is a
generalization of Glauber’s single-spin flipping mechanism
and is suitable to describe both discrete and continuous spin
systems. In addition, other efforts to obtain the dynamic criti-
cal exponentz have been made by means of a variety of
approaches, including« expansion[3,4], the real-space time-
dependent renormalization-group(TDRG) transformation
[5–8], high-temperature series expansion[9,10], Monte
Carlo simulations[11–14], damage spreading[15,16], and
Monte Carlo renormalization-group calculations[17,18]. As
far as the TDRG transformation is concerned, it is a very
effective method to study the critical slowing down of spin
systems on fractal lattices[19–25] due to their self-similar
geometrical features. Among these fractals, hierarchical lat-
tices [26–29] are highly inhomogeneous, and they may pro-
vide insights into other low-symmetry problems such as ran-
dom magnets, surfaces, etc. Therefore, a lot of work on
hierarchical lattices has been done recently[30–34]. How-
ever, in comparison with the static critical behavior, much

less attention has been paid to the study of the critical dy-
namics on these lattices.

Hierarchical lattices can be constructed through an itera-
tive decoration of a two-point bond by a generator, which has
two vertices—i.e., the nodes. Figure 1 shows the construc-
tions of a few members of hierarchical lattices. First, one
replaces a single bond by a basic cell, which is called a
generator[see Figs. 1(b), 1(e), and 1(h)], and gets a lattice of
order 1. At the next stage, each bond of the lattice of order 1
is decorated with the generator in the same manner, then the
lattice of order 2[see Figs. 1(c), 1(f), and 1(i)] is formed.
Repetition of this procedureN times produces the lattice of
order N. Finally, an infinite lattice—i.e., a hierarchical
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FIG. 1. First two stages of the constructions of a few members

of hierarchical lattices.
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lattice—can be formed. According to graph theory[35,36],
one can distinguish between a reducible generator and an
irreducible one. A generator is reducible if it can be con-
structed from its constituent generators; otherwise, it is irre-
ducible. Usually, a reducible generator is made up of some
identical one-dimensional generators, and its two nodes are
joined bym branches ofb bonds. For example, the two gen-
erators shown in Figs. 1(b) and 1(e) are reducible because
they can be constructed from two and three identical one-
dimensional generators, respectively. In contrast with the
above two reducible generators, the generator shown in Fig.
1(h) is irreducible because its two internal sites 3 and 4 are
joined by a bond. In terms of recursion relations of the
renormalization-group transformation, the recursion relation
for a reducible generator can always be written as a product
of the recursion relations for its one-dimensional generators.
For example, consider the Ising model on a hierarchical lat-
tice with the reducible generator shown in Fig. 1(b). One can
write the recursion relation of the renormalization-group
transformation as

AeK8s1s2 = So
s3

eKs3ss1+s2dDSo
s4

eKs4ss1+s2dD ,

where K denotes the interaction between the nearest-
neighbor spins,K8 represents the renormalized interaction,
and A is an additive constant produced after the
renormalization-group transformation. To describe the geo-
metrical features of the generator of a hierarchical lattice,
one can employ some parameters such as the aggregation
numberA, the minimum cutC, and the distance between the
nodes,b, the definitions of which are as follows: the aggre-
gation numberA is the total number of bonds, the minimum
cut C is the minimum number of bonds which need be cut to
separate the nodes, and the distance between the nodes,b, is
defined as the number of bonds on the shortest path joining
them. Based on the above three parameters, the fractal di-
mensionDf and the connectivityQ are defined, respectively,
as

Df =
ln A

ln b
, Q =

ln C

ln b
. s2d

Kong and his collaborators[37] investigated phase transi-
tions of the Gaussian model on a family of hierarchical lat-
tices with reducible generators and calculated six static criti-
cal exponents, the results of which are as follows:a=s4
−Dfd /2, b=sDf −2d /4, g=1, d=sDf +2d / sDf −2d, h=0, and
n=1/2. It can befound that the critical exponentsg, h, and
n are independent of the fractal dimensionDf of the lattice,
while the others—i.e.,a, b, andd—are dependent on it.

In this paper, we study the critical slowing down of the
kinetic Gaussian model on hierarchical lattices by means of a
real-space time-dependent renormalization-group transfor-
mation. The dynamic critical exponentz and the exponentD
are calculated. For hierarchical lattices with reducible gen-
erators, both the dynamic critical exponentz and the expo-
nentD are independent of the fractal dimensionDf, the num-
ber of branchesm, and the number of bonds per branch,b, of
the generator—i.e.,z=2 andD=1. For hierarchical lattices

with irreducible generators, the exponentD is the same—i.e.,
D=1; however, the dynamic critical exponentz is dependent
on the concrete geometrical structure of these lattices and
can be different even if the fractal dimensionDf and the
connectivity Q are the same. In the following section, we
present descriptions of the kinetic Gaussian model with the
single-spin transition mechanism and the method of the
TDRG transformation. The critical slowing down of the ki-
netic Gaussian model on hierarchical lattices with reducible
generators is studied in Sec. III. Section IV is devoted to
hierarchical lattices with irreducible generators. Finally, we
give a brief discussion and conclusion in Sec. V.

II. KINETIC GAUSSIAN MODEL AND TDRG
TRANSFORMATION

Berlin and Kac[38] introduced the spherical and Gauss-
ian models to illuminate some of the complexities of the
critical phenomena, and they also pointed out the connection
between the above two models by means of a calculation of
the average of the fourth power of spins j—i.e., ks j

4. In the
spherical model, the spherical conditiono j=1

j=Ns j
2=N must be

satisfied for every configuration of spins. Above the critical
temperature, the distribution of a finite number of spins—
i.e., a number independent ofN for large N—is Gaussian.
Below the critical temperature, however, deviations from a
Gaussian distribution are obtained because of the coopera-
tion among the spins, which is forced by the spherical con-
dition and does not exist in the Gaussian model. In addition,
the spherical model is a valid model for all temperatures,
whereas the Gaussian model becomes invalid for tempera-
tures below a certain critical temperature. Herein we shall
restrict ourselves to the Gaussian model.

The reduced Hamiltonian of the Gaussian model can be
expressed as

H = − bH = Ko
ki j l

sis j , s3d

where b=1/kBT, K is the reduced interaction between the
nearest-neighbor spins, the continuous spin variables takes
any real value in the intervals−` , +`d, and the sumoki j l is
over all nearest-neighbor pairs of spins. The probability of
finding a given spinsi betweensi andsi +dsi is given by

fssiddsi , expS−
bqi

2
si

2Ddsi , s4d

in which qi is the coordination number of lattice sitei andbqi
is a constant only dependent on the coordination numberqi.
Thus, the equilibrium probability distribution of the spins
can be written as

Peshsjdp
i

dsi =
1

Z
expfHshsjdgp

i

dsi , s5d

where hsj denotes a configuration of spins
ss1, . . . ,si , . . . ,sNd, and Z is the partition function of
system–i.e.,
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Z =E
−`

` Fp
i

dsi fssidGexpfHshsjdg. s6d

Suppose that the system, under a constraint, is first
brought into an equilibrium state. Then at timet=0 the con-
straint is removed, and the system relaxes towards equilib-
rium via an interaction with a heat bath. In this process, only
one spin is allowed to change itself each time according to
the single-spin transition mechanism[2]. Peshsjd can be re-
garded as the infinite-time limit of the spin time-dependent
probability distributionPshsj ,td, the time evolution of which
is given by the master equation

t0
d

dt
Pshsj,td = o

i
o
ŝi

f− Wissi → ŝidPshsj,td

+ Wisŝi → sidPshs jÞij,ŝi,tdg, s7d

wheret0 is a bare time scale characterizing the coupling to a
heat bath andWissi → ŝid is the single-spin transition prob-
ability rate and satisfies the detailed balance condition

Wissi → ŝid
Wisŝi → sid

=
Pess1, . . . ,ŝi, . . . ,sNd
Pess1, . . . ,si, . . . ,sNd

, s8d

as well as the normalization condition

o
ŝi

Wissi → ŝid = 1. s9d

Usually, the spin transition probability rate takes the follow-
ing form:

Wissi → ŝid =
1

Qi
expFKŝio

jsid
s jsidG , s10d

where jsid represents the set of all nearest neighbors to sitei
and the normalization factorQi can be expressed as

Qi =E
−`

+`

expFKŝio
jsid

s jsidG fsŝiddŝi = expF K2

2bqi
So

jsid
s jsidD2G .

s11d

To study the critical slowing down of the kinetic Gaussian
model on hierarchical lattices, we shall use the real-space
time-dependent renormalization-group transformation, pro-
posed by Achiam and Kosterlitz[5] and restrict ourselves to
the relaxation of an infinitely small perturbation from equi-
librium. If we adopt a magneticlike perturbation in the fol-
lowing form at any time

Pshsj,td = S1 + o
i

hqi
stdsiDPeshsjd, s12d

where the perturbation fieldhqi
std is dependent on the coor-

dination numberqi of lattice sitei, then master equation(7)
becomes

t0
d

dt
o

i

hqi
stdsiPeshsjd

= − o
i

o
ŝi

hqi
stdssi − ŝidWissi → ŝidPeshsjd. s13d

By calculating that

o
ŝi

ssi − ŝidWissi → ŝid =E
−`

+`

ssi − ŝidWissi → ŝidfsŝiddŝi

= si −
K

bqi

o
jsid

s jsid, s14d

master equation(13) can be reduced to the following form:

t0
d

dt
o

i

hqi
stdsiPeshsjd

= − o
i

hqi
stdSsi −

K

bqi

o
jsid

s jsidDPeshsjd. s15d

The TDRG transformation is composed of two stages.
One is the rescaling of the space—i.e.,

x → x8 = bx, s16d

whereb is the length-rescaling factor. The other is the res-
caling of the time scale—i.e.,

t08 = bzt0. s17d

Owing to the geometrical features of hierarchical lattices, the
first stage of the TDRG transformation is carried out by
means of the decimation renormalization-group transforma-
tion R, which takes the formR;ohsjTsm ,sd=ohsjp jdsm j

−s jd, wheres j denotes those spins retained in the process of
the renormalization-group transformation. The
renormalization-group transformation of master equation
(15) gives

t0
d

dt
RFo

i

hqi
stdsiPeshsjdG

= − RFo
i

hqi
stdSsi −

K

bqi

o
jsid

s jsidDPeshsjdG . s18d

In the invariant subspace of the parameter spacesK ,hd,
the left-hand side of Eq.(18) gives rise to the following
recursion relations:

K8 = RsKd, h8std = Lhstd, s19d

in which

hstd = 1hq1
std

hq2
std

]

2, h8std = 1hq1
8 std

hq2
8 std

]

2 ,

andL is a transformation matrix. Also, the right-hand side of
Eq. (18) results in the recursion relation
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h9std = Vhstd, s20d

where

h9std = 1hq1
9 std

hq2
9 std

]

2
andV is a transformation matrix. In the second stage of the
TDRG transformation, representingh9std in terms of h8std
and performing the rescaling of the time scale will restore the
master equation to an invariant form. As far as the dynamic
critical exponentz is concerned, it can be determined in the
following way [8]: if matricesL andV commute, then

lmax

vmax
= bz, s21d

wherelmax andvmax are the largest eigenvalues ofL andV,
respectively; otherwise,

lmax

vmin
= bz, s22d

wherevmin is the smallest eigenvalue ofV. In addition, be-
cause a hierarchical lattice is highly inhomogeneous and its
maximum order of ramification is infinite, it is necessary to
present the following assumption[25,37]:

hqi
std

hqj
std

=
bqi

bqi

=
qi

qj
, s23d

which makes the TDRG transformation tractable in this case.

III. KINETIC GAUSSIAN MODEL ON HIERARCHICAL
LATTICES WITH REDUCIBLE GENERATORS

As defined in Sec. I, a reducible generator consists ofm
branches ofb bonds, which meet at the two nodes. Figure 2
shows two families of reducible generators which correspond
to the cases ofb=3 andb=4. For the hierarchical lattice with
a reducible generator in the case ofb=3 as well as an arbi-
trary number of branchesm [see Fig. 2(a)], the fractal dimen-

sion Df is equal to 1+lnm/ ln 3. Using assumption(23),
master equation(15) becomes

t0
d

dt
o
a
Fhmn1

std
s1

a

n1
+ hmn2

std
s2

a

n2

+ h2stdo
r=1

m

ss2r+1
a + s2r+2

a dGPeshsjd

= − o
a
S1 −

2K

b2
DFhmn1

std
s1

a

n1
+ hmn2

std
s2

a

n2

+ h2stdo
r=1

m

ss2r+1
a + s2r+2

a dGPeshsjd, s24d

wherea denotes theath generator, the sumoa is over all
generators of the hierarchical lattice, the coefficient 1/n1 (or
1/n2) in the terms1

a (or s2
a) comes from the fact thatn1 (or

n2) neighboring generators share the same lattice site 1(or
2), and the equilibrium probability distributionPeshsjd can
be expressed as

Peshsjd =
1

Z
expSKo

ki j l
sis j − o

i

bqi

2
si

2D
=

1

Z
p
a

expHKo
r=1

m

ss1
as2r+1

a + s2r+1
a s2r+2

a + s2r+2
a s2

ad

−
bmn1

2

ss1
ad2

n1
−

bmn2

2

ss2
ad2

n2

−
b2

2 o
r=1

m

fss2r+1
a d2 + ss2r+2

a d2gJ . s25d

Master equation(24) can also be written in the following
form:

t0
d

dt
o

i

hqi
stdsiPeshsjd = − o

i
S1 −

2K

b2
Dhqi

stdsiPeshsjd.

s26d

First, we perform the decimation renormalization-group
transformationR to the equilibrium probability distribution
Peshsjd—i.e., expression(25). Using assumption(23), one
can get

RhPeshsjdj =
1

Z
p
a
HexpS−

bmn1

2

sm1
ad2

n1
−

bmn2

2

sm2
ad2

n2
D

3p
r=1

m E
−`

+`

ds2r+1
a ds2r+2

a

3expSKsm1
as2r+1

a + s2r+1
a s2r+2

a + s2r+2
a m2

ad

−
b2

2
fss2r+1

a d2 + ss2r+2
a d2gDJ

FIG. 2. Two families of reducible generators of hierarchical lat-
tices: (a) the number of bonds per branchb=3 and(b) the number
of bonds per branchb=4.
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=
1

Z
p
a

A0 expFK8m18
am28

a

−
bn1

2

1

n1
sm18

ad2 −
bn2

2

1

n2
sm28

ad2G
=

1

Z8
expSK8o

ki j l
mi8m j8 − o

i

bqi

2
mi8

2D
= Pe8shm8jd, s27d

where

A0 = S 2p

Îb2
2 − K2Dm

, s28d

the spins are rescaled as

m8 = jsKdm =Îmsb2
2 − 3K2d

b2
2 − K2 m, s29d

and the recursion relation of the renormalization-group trans-
formation is given by

K8 = RsKd =
K3

b2
2 − 3K2 , s30d

from which one can get the critical pointKc=b2/2. Second,
we perform the decimation renormalization-group transfor-
mationR to siPeshsjd. Using assumption(23), one can get

Rhs1
aPeshsjdj =

1

jsKd
m18

aPe8shm8jd, s31d

Rhs2
aPeshsjdj =

1

jsKd
m28

aPe8shm8jd, s32d

Rhs2r+1
a Peshsjdj =

Ksb2m18
a + Km28

ad
jsKdsb2

2 − K2d
Pe8shm8jd

sr = 1,2, . . . ,md, s33d

and

Rhs2r+2
a Peshsjdj =

KsKm18
a + b2m28

ad
jsKdsb2

2 − K2d
Pe8shm8jd

sr = 1,2, . . . ,md. s34d

Thus, using assumption(23) and Eqs. (31)–(34), the
renormalization-group transformation of the left-hand side of
master equation(26) gives

t0
d

dt
RHo

i

hqi
stdsiPeshsjdJ

= t0
d

dt
RHo

a
Fhmn1

std
s1

a

n1
+ hmn2

std
s2

a

n2

+ h2stdo
r=1

m

ss2r+1
a + s2r+2

a dGPeshsjdJ

= t0
d

dt
o
a

msb2 + Kd
jsKdsb2 − Kd

Shn1
std

m18
a

n1
+ hn2

std
m28

a

n2
DPe8shm8jd

= t0
d

dt
o

i

msb2 + Kd
jsKdsb2 − Kd

hqi
stdmi8Pe8shm8jd

= t0
d

dt
o

i

hqi
8 stdmi8Pe8shm8jd, s35d

where

hqi
8 std = lhqi

std =
msb2 + Kd

jsKdsb2 − Kd
hqi

std. s36d

In the same way, the renormalization-group transformation
of the right-hand side of master equation(26) gives

− RHo
i
S1 −

2K

b2
Dhqi

stdsiPeshsjdJ
= − RHo

a
S1 −

2K

b2
DFhmn1

std
s1

a

n1
+ hmn2

std
s2

a

n2

+ h2stdo
r=1

m

ss2r+1
a + s2r+2

a dGPeshsjdJ
= − o

i

msb2 − 2Kdsb2 + Kd
jsKdb2sb2 − Kd

hqi
stdmi8Pe8shm8jd

= − o
i
S1 −

2K8

b2
Dhqi

9 stdmi8Pe8shm8jd, s37d

where

hqi
9 std = vhqi

std =
msb2 − 2Kdsb2 + Kd

jsKdsb2 − Kdsb2 − 2K8d
hqi

std. s38d

Furthermore, if we representhqi
9 std in terms ofhqi

8 std and per-
form the rescaling of the time scale by

t08 = bzt0 =
l

v
t0 =

sb2 + Kd2

b2
2 − 3K2 t0, s39d

then the invariant form of master equation(26) can be
restored—i.e.,

t08
d

dt
o

i

hqi
8 stdmi8Pe8shm8jd = − o

i
S1 −

2K8

b2
Dhqi

8 stdmi8Pe8shm8jd.

s40d

From the recursion relation of the renormalization-group
transformation—i.e., Eq. (30)—one can obtain the
correlation-length critical exponentn—i.e.,

1

n
=

1

ln b
lnUSdK8

dK
DU

Kc

=
ln 9

ln 3
= 2. s41d

Also, from Eq.(39) the dynamic critical exponentz can be
calculated as
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z=
1

ln b
lnU sb2 + Kd2

b2
2 − 3K2 U

Kc

=
ln 9

ln 3
= 2. s42d

Thus, the above two equations(41) and (42) give

D = zn = 1. s43d

For the hierarchical lattice with a reducible generator in
the case ofb=4 as well as an arbitrary number of branchesm
[see Fig. 2(b)], the fractal dimensionDf is equal to 1
+ln m/ ln 4. By means of the TDRG transformation, one can
also obtain that

z= 2, D = 1. s44d

The above calculations, as well as the investigation on a
family of diamond-type hierarchical lattices with the number
of bonds per branchb=2 [24], reveal that for the kinetic
Gaussian model on hierarchical lattices with reducible gen-
erators, both the dynamic critical exponentz and the expo-
nentD are independent of the fractal dimensionDf, the num-
ber of branchesm, and the number of bonds per branchb of
the generator—i.e.,z=2 andD=1. This result is very similar
to that in Ref.[2], where it has been found that for one-,
two-, and three-dimensional translation-invariant lattices,
both the dynamic critical exponentz=2 and the exponent
D=1 are independent of the spatial dimensionality.

IV. KINETIC GAUSSIAN MODEL ON HIERARCHICAL
LATTICES WITH IRREDUCIBLE GENERATORS

Figure 3 shows three irreducible generators of hierarchi-
cal lattices. For the hierarchical lattice with a irreducible gen-
erator corresponding to Fig. 3(a), the fractal dimensionDf
=ln 6/ ln 2 and the connectivityQ=1. Using assumption
(23), the right-hand side of master equation(15) becomes

− o
i

hqi
stdSsi −

K

bqi

o
jsid

s jsidDPeshsjd

= − o
a
S1 −

3K

b3
DFh2n1

std
s1

a

n1
+ h2n2

std
s2

a

n2
+ h3stds3

a

+ h2stds4
a + h3stds5

aGPeshsjd

= − o
i
S1 −

3K

b3
Dhqi

stdsiPeshsjd. s45d

Thus, master equation(15) can be written in the following
form:

t0
d

dt
o

i

hqi
stdsiPeshsjd = − o

i
S1 −

3K

b3
Dhqi

stdsiPeshsjd.

s46d

In addition, the equilibrium probability distributionPeshsjd
can be expressed as

Peshsjd =
1

Z
expSKo

ki j l
sis j − o

i

bqi

2
si

2D
=

1

Z
p
a

expHKss1
a + s2

a + s4
adss3

a + s5
ad

−
b2n1

2

ss1
ad2

n1
−

b2n2

2

ss2
ad2

n2
−

b2

2
ss4

ad2

−
b3

2
fss3

ad2 + ss5
ad2gJ , s47d

the renormalization-group transformation of which gives

RhPeshsjdj =
1

Z
p
a
E

−`

+`

p
i=3

5

dsi
a expHKsm1

a + m2
a + s4

adss3
a + s5

ad −
b2n1

2

sm1
ad2

n1
−

b2n2

2

sm2
ad2

n2
−

b2

2
ss4

ad2 −
b3

2
fss3

ad2 + ss5
ad2gJ

=
1

Z
p
a

A0 expFK8m18
am28

a −
bn1

2

1

n1
sm18

ad2 −
bn2

2

1

n2
sm28

ad2G =
1

Z8
expSK8o

ki j l
mi8m j8 − o

i

bqi

2
mi8

2D = Pe8shm8jd, s48d

FIG. 3. Three irreducible generators of hierarchical lattices with
different sets of parametershA,C,bj and hDf ,Qj: (a) A=6, C=2,
b=2 and Df =ln 6/ ln 2, Q=1; (b) A=5, C=2, b=2 and Df

=ln 5/ ln 2, Q=1; (c) A=8, C=3, b=2 andDf =3, Q=ln 3/ ln 2.
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where

A0 = 2pÎ 2p

b3sb2b3 − 2K2d
, s49d

the spins are rescaled as

m8 = jsKdm =Î2b2b3 − 8K2

b2b3 − 2K2 m, s50d

and the recursion relation of the renormalization-group trans-
formation is given by

K8 = RsKd =
b3K

2

b3
2 − 6K2 , s51d

from which one can get the critical pointKc=b3/3. Using
assumption(23), one can get

Rhs1
aPeshsjdj =

1

jsKd
m18

aPe8shm8jd, s52d

Rhs2
aPeshsjdj =

1

jsKd
m28

aPe8shm8jd, s53d

Rhs3
aPeshsjdj = Rhs5

aPeshsjdj =
b2Ksm18

a + m28
ad

jsKdsb2b3 − 2K2d
Pe8shm8jd,

s54d

and

Rhs4
aPeshsjdj =

2K2sm18
a + m28

ad
jsKdsb2b3 − 2K2d

Pe8shm8jd. s55d

Thus, using assumption(23) and Eqs. (52)–(55), the
renormalization-group transformation of the left-hand side of
master equation(46) gives

t0
d

dt
RHo

i

hqi
stdsiPeshsjdJ

= t0
d

dt
RHo

a
Fh2n1

std
s1

a

n1
+ h2n2

std
s2

a

n2
+ h2stds4

a + h3std

3ss3
a + s5

adGPeshsjdJ
= t0

d

dt
o
a

2sb2b3 + 3b2K − 4K2d
jsKdsb2b3 − 2K2d

3Shn1
std

m18
a

n1
+ hn2

std
m18

a

n2
DPe8shm8jd

= t0
d

dt
o

i

2sb2b3 + 3b2K − 4K2d
jsKdsb2b3 − 2K2d

hqi
stdmi8Pe8shm8jd

= t0
d

dt
o

i

hqi
8 stdmi8Pe8shm8jd, s56d

where

hqi
8 std = lhqi

std =
2sb2b3 + 3b2K − 4K2d

jsKdsb2b3 − 2K2d
hqi

std. s57d

In the same way, the renormalization-group transformation
of the right-hand side of master equation(46) gives

− RHo
i
S1 −

3K

b3
Dhqi

stdsiPeshsjdJ
= − RHo

a
S1 −

3K

b3
DFh2n1

std
s1

a

n1
+ h2n2

std
s2

a

n2

+ h2stds4
a + h3stdss3

a + s5
adGPeshsjdJ

= − o
i

2sb3 − 3Kdsb2b3 + 3b2K − 4K2d
jsKdb3sb2b3 − 2K2d

3hqi
stdmi8Pe8shm8jd

= − o
i
S1 −

3K8

b3
Dhqi

9 stdmi8Pe8shm8jd, s58d

where

hqi
9 std = vhqi

std =
2sb3 − 3Kdsb2b3 + 3b2K − 4K2d

jsKdsb2b3 − 2K2dsb3 − 3K8d
hqi

std.

s59d

Furthermore, if we representhqi
9 std in terms ofhqi

8 std and per-
form the rescaling of the time scale by

t08 = bzt0 =
l

v
t0 =

b3sb3 + 3Kd
b3

2 − 6K2 t0, s60d

then the invariant form of master equation(46) can be
restored—i.e.,

t08
d

dt
o

i

hqi
8 stdmi8Pe8shm8jd = − o

i
S1 −

3K8

b3
Dhqi

8 stdmi8Pe8shm8jd.

s61d

From the recursion relation of the renormalization-group
transformation—i.e., Eq. (51)—one can obtain the
correlation-length critical exponentn—i.e.,

1

n
=

1

ln b
UlnSdK8

dK
DU

Kc

=
ln 6

ln 2
. s62d

Also, from Eq.(60) the dynamic critical exponentz can be
calculated as

z=
1

ln b
Uln

b3sb3 + 3Kd
b3

2 − 6K2 U
Kc

=
ln 6

ln 2
. s63d

Thus, the above two equations(62) and (63) give

D = zn = 1. s64d

For hierarchical lattices with irreducible generators corre-
sponding to Figs. 3(b) (Df =ln 5/ ln 2, Q=1) and 3(c) (Df
=3, Q=ln 3/ ln 2), by means of the TDRG transformation,
one can also, respectively, obtain that
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z=
ln 5

ln 2
, D = 1, s65d

and

z=
lns16/3d

ln 2
= 4 −

ln 3

ln 2
, D = 1. s66d

From the above calculations, it can be found that for the
kinetic Gaussian model on hierarchical lattices with irreduc-
ible generators, which have different sets of parameters
hA,C,bj and hDf ,Qj, the dynamic critical exponentz has
different values dependent on the concrete geometrical struc-
ture of these lattices, whereas the exponentD is the same—
i.e., D=1. In fact, this result is still correct even if hierarchi-
cal lattices with irreducible generators have the same set of
parametershA,C,bj and hDf ,Qj. Figure 4 shows two irre-
ducible generators of hierarchical lattices with the sameA,
C, b, and Df, Q—i.e., A=8, C=2, b=3 andDf =ln 8/ ln 3,
Q=ln 2/ ln 3. For hierarchical lattices with irreducible gen-
erators corresponding to Figs. 3(a) and 3(b), the results of the
TDRG transformation are, respectively,

z= 1 +
ln 4

ln 3
, D = 1, s67d

and

z=
ln 10

ln 3
, D = 1. s68d

V. CONCLUSION AND DISCUSSION

In this paper, by means of a real-space time-dependent
renormalization-group transformation, we studied the critical
slowing down of the kinetic Gaussian model on hierarchical
lattices. The dynamic critical exponentz and the exponentD
were calculated. For hierarchical lattices with reducible gen-
erators, both the dynamic critical exponentz and the expo-
nent D are independent of the fractal dimensionDf of the
lattice, the number of branches,m, and the number of bonds
per branch,b, of the generator—i.e.,z=2 andD=1. For hi-
erarchical lattices with irreducible generators, the exponent

D is the same—i.e.,D=1; however, the dynamic critical ex-
ponentz is dependent on the concrete geometrical structure
of these lattices and can be different even if the fractal di-
mensionDf and the connectivityQ are the same.

As mentioned in Sec. I, Zhu and Yang[2] exactly solved
the kinetic Gaussian model on one-, two-, and three-
dimensional translation-invariant lattices and found the ex-
ponentD independent of the spatial dimensionality—i.e.,D
=1. By means of the TDRG transformation, Zhu and Yang
[23] also studied the critical slowing down of the kinetic
Gaussian model on the nonbranching, branching, and multi-
branching Koch curves and obtained that the exponentD is
equal to 1 and is independent of the fractal dimension of the
Koch curve. In this work, we also obtained that the exponent
D is always 1 for the kinetic Gaussian model on hierarchical
lattices with reducible or irreducible generators. Based on the
above investigations, we may suppose that this result—i.e.,
D=1—is produced by the kinetic Gaussian model itself and
is irrelevant to the details of lattice structure. In other words,
the resultD=1 seems to imply that the effect of lattice de-
pendence of the dynamic critical exponentz counteracts that
of the correlation-length critical exponentn. We believe that
there is some interesting physics behind it to be further ex-
posed.

In this paper, we also found that the lattice dependence of
the correlation-length critical exponentn is the same as that
of the dynamic critical exponentz. In the case of reducible
generators, the correlation-length critical exponentn is al-
ways equal to 1/2, which is in good agreement with that in
Ref. [37]. In the case of irreducible generators, this exponent
is not equal to 1/2, but has much dependence on the concrete
geometrical structure of hierarchical lattices. As mentioned
in Sec. I, for the Gaussian model on hierarchical lattices with
reducible generators, the critical exponentsg and h, like n,
are also independent of the fractal dimensionDf of the lat-
tice, while the others—i.e.,a, b, andd—are dependent on it
[37]. Thus, it is obvious that the lattice dependence of the
static critical exponentsa, b, andd is different from that of
the dynamic critical exponentz. In fact, the behavior of the
dynamic critical exponentz on hierarchical lattices reflects
one aspect of universality for critical dynamics. As far as
fractal lattices are concerned, universality is still an open
problem even for static critical phenomena[36].

As we know, universality is one of the three pillars of
modern critical phenomena[39], and it depends on a number
of factors. The static critical phenomena depend on the spa-
tial dimensionality and the symmetry of the order parameter,
while the dynamic properties will depend on additional prop-
erties of the system which do not affect the statics. It is
conjectured[4] that the universality class for critical dynam-
ics is sufficiently determined by the conservation laws,
Poisson-bracket relations among the order parameter, and the
conserved densities, the spatial dimensionality, the symmetry
of the order parameter, and any other properties that affect
the static critical behavior. However, through the investiga-
tions of the dynamic critical exponentz in this paper, we
have shown some unexpected difficulties in searching for the
complete set of universality criteria for critical dynamics on
hierarchical lattices. We believe this is an interesting ques-

FIG. 4. Two irreducible generators of hierarchical lattices with
the same set of parametershA,C,bj and hDf ,Qj: A=8, C=2, b=3
andDf =ln 8/ ln 3, Q=ln 2/ ln 3.
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tion to be further studied. Also, the results of this paper sug-
gest that as far as universality is concerned, one cannot learn
much from hierarchical lattices to understand the behavior of
critical dynamical exponents on regular lattices.

J.-X.L. would like to thank Dr. X.-M. Kong for the valu-
able discussions. This work was supported by the National
Natural Science Foundation of China under Grant No.
10175008.
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